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The significance of the quantum feature of entanglement between physical systems
is investigated in the context of quantum measurements. It is shown that, while there
are measurement couplings that leave the object and probe systems nonentangled, no
information transfer from object to probe can take place unless there is at least some
intermittent period where the two systems are entangled.
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1. INTRODUCTION

In recent years, the quantum feature of entanglement between physical sys-
tems has increasingly been recognized as an enormously valuable resource for
purposes of information processing. Here we analyze the role of entanglement in
the context of measurement processes.

In contrast to the situation in classical physics where all observables can be
measured, in principle, with arbitrary accuracy and with negligible disturbance,
quantum measurements are subject to the following theorem: there is no informa-
tion gain withoutsomestate disturbance. The proof (Buschet al., 1996, p. 32) is
simple: assuming that the state transformer (also known asinstrument) defined by
a measurement scheme leavesall object states unchanged, it then follows immedi-
ately that the probabilities of measurement outcomes do not depend on the initial
state of the measured object. This is to say that the measured observable istrivial ,
that is, represented by a positive operator measure whose effects are multiples of
the identity operator of the underlying Hilbert space.

Hence there is no measurement with no disturbance. This disturbance is
caused by the interaction that takes place between the object and the measure-
ment device, usually mediated through a probe system. But one usually thinks of
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interactions producing entanglement. Hence the question arises as to whether mea-
surements are possible which leave the object and probe in a nonentangled state,
or whether there is a similar theorem to the above one that says, “no measurement
without entanglement.” We will show that the answer is affirmative, but not in the
most direct sense conceivable.

2. ENTANGLEMENT AND MEASUREMENT

We prove the following:

Proposition 1. LetH1,H2 be complex separable Hilbert spaces,φ0 a unit vector
in H2. Assume U: H1⊗H2→ H1⊗H2 is a unitary map such that for allϕ ∈
H1, U(ϕ ⊗ φ0) = ϕ′ ⊗ φ′ for some unit vectorsϕ′ ∈ H1, φ′ ∈ H2. Then U acts in
one of the following two ways:

(1) U (ϕ ⊗ φ0) = V(ϕ)⊗ φ′, where V is an isometry inH1 andφ′ is a fixed
unit vector inH2;

(2) U (ϕ ⊗ φ0) = ϕ′ ⊗W12ϕ, where W12 is an isometry fromH1 toH2 and
ϕ′ is a fixed unit vector inH1.

Proof: Let {ϕn : n = 1, 2,. . .} be an orthonormal basis ofH1. There are systems
of unit vectorsϕ′n ∈ H1, φ′n ∈ H2 such thatUϕn ⊗ φ0 = ϕ′n ⊗ φ′n. Because of to
the unitarity ofU , all the vectorsϕ′n ⊗ φ′n are mutually orthogonal. We show that
one of two cases (a), (b) must hold

(a) {ϕ′n}n∈N is an orthonormal system, allφ′n are parallel toφ′1;
(b) {φ′n}n∈N is an orthonormal system, allϕ′n are parallel toϕ′1.

For two vectorsψ, ξ which are mutually orthogonal,〈ψ |ξ〉 = 0, we will
write ψ ⊥ ξ . If ψ, ξ are parallel, we writeψ ‖ ξ . SinceU is unitary, this map
sends orthogonal vector pairs to orthogonal pairs. Hence fromϕ1 ⊥ ϕ2 it follows
thatϕ′1 ⊥ ϕ′2 or φ′1 ⊥ φ′2. Consider the first case. Then

U

(
1√
2

(ϕ1+ ϕ2)⊗ φ0

)
= ϕ′12⊗ φ′12 =

1√
2
ϕ′1⊗ φ′1+

1√
2
ϕ′2⊗ φ′2, (1)

whereϕ′12 ∈ H1, φ′12 ∈ H2 are some unit vectors. Sinceϕ′1 ⊥ ϕ′2, it follows that
φ′2 = cφ′1 with somec ∈ C, |c| = 1. Hence we have

U ((ϕ1+ ϕ2)⊗ φ0) = (ϕ′1+ cϕ′2)⊗ φ′1 (2)

Still considering the caseϕ′1 ⊥ ϕ′2, the relationϕ2 ⊥ ϕ3 implies thatϕ′2 ⊥ ϕ′3 or
φ′2 ⊥ φ′3. Suppose the latter holds. We show that this leads to a contradiction.
Indeed this assumption givesϕ′3 = c′ϕ′2 and thus

U ((ϕ1+ ϕ2+ ϕ3)⊗ φ0) =
√

3ϕ′123⊗ φ′123 (3)
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= ϕ′1⊗ φ′1+ ϕ′2⊗ φ′2+ ϕ′3⊗ φ′3 (4)

= (ϕ′1+ cϕ′2)⊗ φ′1+ ϕ′3⊗ φ′3 (5)

whereϕ′123andφ′123are some unit vectors. Recalling thatφ′2 = cφ′1 and, by assump-
tion, φ′2 ⊥ φ′3, thenφ′1 ⊥ φ′3, and we see thatϕ′1+ cϕ′2 = c′′ϕ′3 for somec′′ 6= 0.
Upon taking the inner product of both sides withϕ′1, we get (sinceϕ′1 ⊥ ϕ′2)
that 〈ϕ′1|ϕ′1〉 = c′′〈ϕ′1|ϕ′3〉 = 0) (sinceϕ′3 = c′ϕ′2 ⊥ ϕ′1). Henceϕ′1 = 0 which is a
contradiction.

Thus the assumption is false and we can only haveϕ′2 ⊥ ϕ′3. Continuing
inductively, we obtain that{ϕ′i : i ∈ N} is an orthonormal system and all
φ′n = ciφ

′
1. Therefore, we obtain possibility (a) in the present case. Linearity

then entails thatU (ϕ ⊗ φ0) = V(ϕ)⊗ φ′0 for all ϕ ∈ H1 and some isometric
mapV .

A completely analogous consideration can be applied in the second case of
φ′1 ⊥ φ′2, thus leading to the possibility (b) and

U (ϕ ⊗ φ0) =
∑

i

〈ϕi |ϕ〉U (ϕi ⊗ φ0)

= ϕ′0⊗
∑

i

〈ϕi |ϕ〉φ′i =: ϕ′0⊗W12(ϕ) (6)

for all ϕ ∈ H1 and some isometric mapW12 : H1→ H2. ¤

With this result we are ready to prove the following:

Theorem 1. Let U : H1⊗H2→ H1⊗H2 be a unitary mapping such that for
all vectorsϕ ∈ H1, φ ∈ H2, the image ofH1⊗H2 under U is of the form U(ϕ ⊗
φ) = ϕ′ ⊗ φ′. Then U is one of the following:

(a) U = V ⊗W, where V: H1→ H1 and W : H2→ H2 are unitary;
(b) U (ϕ ⊗ φ) = V21φ ⊗W12ϕ, where V21 : H2→ H1 and W12 : H1→ H2

are surjective isometries.

The latter case can only occur ifH1 andH2 are Hilbert spaces of equal dimensions.

Proof: Let {φi : i = 0, 1, 2,. . .} be an orthonormal basis ofH2. For eachi , we
have, from Proposition 1, that eitherU (ϕ ⊗ φi ) = Vi (ϕ)⊗ φ′i (?) with some uni-
tary Vi or U (ϕ ⊗ φi ) = ϕ′i ⊗W(i )

12ϕ(??) for some isometryW(i )
12 .

Case 1. U (ϕ ⊗ φ0) = V0ϕ ⊗ φ′0. We show that (?) must hold for alli . Assume
(??) holds for somei ≥ 1. Considering the superpositionφ0+ φi we find, by an
argument analogous to one used in the previous proof, that eitherV0ϕ ⊥ ϕ′i and
φ′0 ‖W(i )

12ϕ or φ′0 ⊥ W(i )
12ϕ andV0ϕ ‖ϕ′i . The first case would violate the isometric
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nature ofW(i )
12 and the second the unitarity ofVO. Hence (??) is excluded and (?)

must hold for alli in Case 1.
Still in Case 1, we therefore must have one of (A)V0ϕ ⊥ V1ϕ andφ′0 ‖φ′1 or

(B) V0ϕ ‖V1ϕ andφ′0 ⊥ φ′1 Consider case (A). Two possibilities arise (considering
the superpositionφ0+ φ2): eitherV0ϕ ⊥ V2ϕ andφ′0 ‖φ′2; or V0ϕ ‖V2ϕ andφ′0 ⊥
φ′2. The second leads toφ′1 ⊥ φ′2 (sinceφ′0 ‖φ′1), thereforeV1ϕ ‖V2ϕ (considering
the superpositionφ1+ φ2) and thusV0ϕ ‖V1ϕ, which contradicts the assumption
of case (A). Hence in that case one must always haveV0ϕ ⊥ Viϕ andφ′0 ‖φ′i
for all i ≥ 1. Henceφ′i = ciφ

′
0, with |ci | = 1. But that implies, forφ =∑i αiφi ,

that Uϕ ⊗ φ =∑i αi Viϕ ⊗ φ′i = (
∑

i αi ci Viϕ)⊗ φ′0. This would contradict the
surjectivity ofU .

This leaves us with case (B). Suppose we haveφ′0 ‖φ′2 and thusV0ϕ ⊥ V2ϕ;
this give φ′2 ⊥ φ′1 (from φ′0 ⊥ φ′1) and soV1ϕ ‖V2ϕ henceV0ϕ ⊥ V1ϕ (from
V0ϕ ⊥ V2ϕ), in contradiction to (B). Therefore we must haveφ′0 ⊥ φ′2 and by ex-
tension of this argument,φ′0 ⊥ φ′i . Furthermore, since (?) holds in Case 1, similar
arguments (considering superpositionsφi + φ j , φi + φk, φ j + φk) show that we
must always haveφ′i ⊥ φ′j andViϕ ‖Vjϕ for i 6= j . We thus obtainViϕ = ci V0ϕ.
It is not hard to see (consideringU ((αϕ + βψ)⊗ φi ) that the constantsci are
independent ofϕ. We getU (ϕ ⊗ φi ) = V0ϕ ⊗ ciφ

′
i . Unitarity of U enforces that

V is unitary and theφ′i from an orthonormal basis. Therefore we can define a
unitary mapW as the unique linear extension ofWφi := ciφ

′
i . This finally leads

to U (ϕ ⊗ φ) = V0ϕ ⊗Wφ.

Case 2: U (ϕ ⊗ φ0) = ϕ′0⊗W0ϕ. SupposeU (ϕ ⊗ φ1) = V1ϕ ⊗ φ′1. This gives
eitherϕ′0 ⊥ V1ϕ andW0ϕ ‖φ′1 or ϕ′0 ‖V1ϕ andW0ϕ ⊥ φ′1. Both possibilities are
excluded asW0 andV1 (being isometric maps) do not map onto a ray. We conclude
that in Case 2,U (ϕ ⊗ φi ) = ϕ′i ⊗Wiϕ must hold for alli .

ConsiderU (ϕ ⊗ φ1) = ϕ′1⊗W1ϕ. We must have eitherϕ′1 ⊥ ϕ′0 andW0ϕ ‖
W1ϕ, orϕ′1 ‖ϕ′0 andW0ϕ ⊥ W1ϕ. In the latter case, supposeφ′2 ⊥ φ′0, which goes
along with W0ϕ ‖W2ϕ. This gives ϕ′1 ⊥ ϕ′2 and so W1ϕ ‖W2ϕ, and
thereforeW0ϕ ‖W1ϕ, in contradiction to the present case. Therefore, ifϕ′1 ‖ϕ′0 then
ϕ′i ‖ϕ′0 for all i ≥ 1. As in Case 1, this violates the surjectivity
of U .

Hence we must have the former case,ϕ′1 ⊥ ϕ′0 and W0ϕ ‖W1ϕ. Again in
analogy to Case 1, we can conclude thatϕ′i ⊥ ϕ′j andWiϕ ‖W0ϕ for all i , j . We may
write Wiϕ = ci W0ϕ, where theci are of modulus 1 and independent ofϕ. Thus we
get U (ϕ ⊗∑i αiφi ) =

∑
i αi ciϕ

′
i ⊗W0ϕ. PuttingW12 := W0, αi = 〈φi |φ〉, and

V21φ :=∑i ci 〈φi |φ〉ϕ′i , we get the final resultU (ϕ ⊗ φ) = V21φ ⊗W12ϕ. Again,
unitarity ofU ensures thatW0 is unitary and theϕ′i form an orthonormal basis, so
thatV12 is also unitary. ¤

A unitary map with the property that product states are sent to product states
can be used to model dynamics that do not lead to entanglement between the
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systems involved. Thus it can be said that all nonentangling dynamics are of the
form described in the theorem above.

Example. LetH1 = H2 = H. Let E :
∑→ L(H) be a positive operator valued

measure (POVM) inH, defined on aσ -algebra of subsets of some setÄ, with
values in the space of bounded operators onH. DefineU (ϕ ⊗ φ) = φ ⊗ ϕ. Then
we have

〈Uϕ ⊗ φ|I ⊗ E(X)Uϕ ⊗ φ〉 = 〈ϕ|E(X)ϕ〉. (7)

This is the probability reproducibility condition which makes the present model,
with couplingU , pointerE, and initial probe stateφ a measurement scheme for
the observableE of the first system (Buschet al., 1996, 1997).

This model demonstrates positively that information can be copied from the
object onto a probe in such a way that these two systems are left nonentangled.
Our theorems also show that there are two distinct types of nonentangling unitary
maps: product operators or swap maps. Consider a continuous unitary groupUt

which models the interaction between object and probe from timet = 0 to time
t = τ . SupposeUt is of the formVt ⊗Wt for all t, 0≤ t < τ . If Uτ were to have
the formV21⊗W12, then continuity would dictate that, ast → τ , thenVtϕ→ φ

for all ϕ, andWtφ→ ϕ for all ϕ. But this is clearly impossible.
It follows that if a unitary continuous measurement dynamicsUt leads to a

state transformationUτ given by the swap mapping, then for 0< t < τ , some of
theUt must be such that they produce entanglement; they cannot all be of product
form.

3. CONCLUSION

We conclude that abstract Hilbert space quantum mechanics admits nonen-
tangling measurements for all positive operator measures, although intermediately
some entanglement must build up. Whether such measurement dynamics can be
implemented by realistic interactions is another question.
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