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The Role of Entanglement in Quantum
Measurement and Information Processing
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The significance of the quantum feature of entanglement between physical systems
is investigated in the context of quantum measurements. It is shown that, while there
are measurement couplings that leave the object and probe systems nonentangled, no
information transfer from object to probe can take place unless there is at least some
intermittent period where the two systems are entangled.

KEY WORDS: quantum measurement; disturbance; entanglement; tensor product;
guantum information.

1. INTRODUCTION

In recent years, the quantum feature of entanglement between physical sys-
tems has increasingly been recognized as an enormously valuable resource for
purposes of information processing. Here we analyze the role of entanglement in
the context of measurement processes.

In contrast to the situation in classical physics where all observables can be
measured, in principle, with arbitrary accuracy and with negligible disturbance,
guantum measurements are subject to the following theorem: there is no informa-
tion gain withoutsomestate disturbance. The proof (Busethal, 1996, p. 32) is
simple: assuming that the state transformer (also knovimstrsimen} defined by
a measurement scheme leagb®bject states unchanged, it then follows immedi-
ately that the probabilities of measurement outcomes do not depend on the initial
state of the measured object. This is to say that the measured observebial is
that is, represented by a positive operator measure whose effects are multiples of
the identity operator of the underlying Hilbert space.

Hence there is no measurement with no disturbance. This disturbance is
caused by the interaction that takes place between the object and the measure-
ment device, usually mediated through a probe system. But one usually thinks of
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interactions producing entanglement. Hence the question arises as to whether mea-
surements are possible which leave the object and probe in a nonentangled state,
or whether there is a similar theorem to the above one that says, “no measurement
without entanglement.” We will show that the answer is affirmative, but not in the
most direct sense conceivable.

2. ENTANGLEMENT AND MEASUREMENT

We prove the following:

Proposition1. LetH;, H, be complex separable Hilbert spacgsa unit vector
in Hy. Assume U H; ® Ho — Hi ® H, is a unitary map such that for app
Hi1, U(p ® ¢o) = ¢’ ® ¢’ for some unit vectorg’ € Hi, ¢’ € Ho. ThenU actsin
one of the following two ways:

(1) U(p ® ¢o) = V(p) ® ¢, where V is an isometry if{; and¢’ is a fixed
unit vector inH>;

(2) U(p ® ¢o) = ¢ @ Wiop, where W, is an isometry front{; to H, and
¢’ is a fixed unit vector irtH;.

Proof: Let{yn:n=1,2,...} beanorthonormal basis #f;. There are systems
of unit vectorsy;, € Hi, ¢, € H2 such that) ¢, ® ¢o = ¢, ® ¢;,. Because of to
the unitarity ofU, all the vectorsy, ® ¢;, are mutually orthogonal. We show that
one of two cases (a), (b) must hold

(@) {¢}}nen is an orthonormal system, af], are parallel tap;;
(b) {¢;}nen is an orthonormal system, aif, are parallel tap;.

For two vectorsy, & which are mutually orthogonaly|£) = 0, we will
write L &. If i, & are parallel, we write/ || €. SinceU is unitary, this map
sends orthogonal vector pairs to orthogonal pairs. Hence §rom ¢, it follows
thaty; L ¢, or ¢; L ¢,. Consider the first case. Then

1 1 1
Ul —=(1+¢2)® )=’®’=—/®’+—’®/, 1
<ﬁ(¢1 $2) ® ¢o $12® P12 ﬁ¢1 ¢1 ﬁ¢2 ¢z (1)
whereg), € Hi, ¢1, € H, are some unit vectors. Singg L ¢, it follows that
¢, = ¢y with somec € C, |c| = 1. Hence we have

U (g1 + 92) ® po) = (91 + Cp2) ® ¢1 ()

Still considering the case; L ¢5, the relationg, L @3 implies thate;, L ¢4 or
¢, L ¢5. Suppose the latter holds. We show that this leads to a contradiction.
Indeed this assumption giveg = ¢'¢, and thus

U((¢1 + 92 + ¢3) @ do) = V30153 ® Pizg 3
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= ¢ ® ¢ + ¢, ® ¢+ 93 ® ¢ 4
= (¢} + Cpy) ® ¢1 + 93 @ 3 (5)

wherey; ,;andg;,;are some unitvectors. Recalling tidgt= c¢; and, by assump-
tion, ¢; L ¢3, theng; L ¢5, and we see that; + cy;, = ¢’¢5 for somec” # 0.
Upon taking the inner product of both sides with, we get (sincep; L ¢5)
that (¢1]¢]) = ¢"{¢1les) = 0) (sincep; = C'p, L ¢7). Henceyp; = 0 which is a
contradiction.

Thus the assumption is false and we can only haye. ¢5. Continuing
inductively, we obtain that{¢] :i € N} is an orthonormal system and all
¢;, = Ci¢;. Therefore, we obtain possibility (a) in the present case. Linearity
then entails that (¢ ® ¢o) = V(p) ® ¢; for all ¢ € H1 and some isometric
mapV.

A completely analogous consideration can be applied in the second case of
@1 L ¢5, thus leading to the possibility (b) and

Ulp ® ¢o) = Y _(¢ile)U (¢ ® o)

I
=0 ® Y _(pile)dl =: 9f ® Wialp) (6)
i
for all ¢ € H1 and some isometric mapy, : Hy — Ho. O
With this result we are ready to prove the following:

Theorem 1. LetU : H; ® Ho, — Hi ® Hy be a unitary mapping such that for
all vectorsy € Hi, ¢ € Ha, the image of{; ® H, under U is of the form p ®
¢) = ¢’ ® ¢'. Then U is one of the following:

(& U=V ®W,where V: H; — Hy and W: H, — H, are unitary;
(b) U(p ® ¢) = V210 @ Wiop, Where ;1 : Ho — Hiand Wo : Hy — Ho
are surjective isometries.

The latter case can only occurt; and™ are Hilbert spaces of equal dimensions.

Proof: Let{¢; :i =0, 1, 2,...} be an orthonormal basis &f,. For each, we
have, from Proposition 1, that eithe(p ® ¢i) = Vi(¢) ® ¢/ (x) with some uni-
tary Vi or U(p ® ¢1) = ¢ ® W (x) for some isometryn).

Case 1. U(¢ ® ¢o) = Voy ® ¢y. We show that«) must hold for alli. Assume
(%) holds for someé > 1. Considering the superpositigg + ¢; we find, by an
argument analogous to one used in the previous proof, that aiggert. ¢ and

o5 I W¢ or ¢y L W e andVoe || ¢ The first case would violate the isometric



940 Busch

nature of\Nl('z) and the second the unitarity ¥. Hence {*) is excluded andx
must hold for alli in Case 1.

Still in Case 1, we therefore must have one of {&p L Vi andey || ¢; or
(B) Vop || Vig andg, L ¢; Consider case (A). Two possibilities arise (considering
the superpositiog + ¢»): eitherVop L Vop andey || ¢5; or Voo || Vap ande, L
¢5. The second leads i L ¢, (sincegy || ¢1), thereforeVyip || Vog (considering
the superposition; + ¢,) and thusVpe || V1, which contradicts the assumption
of case (A). Hence in that case one must always Nawe L Vig and ¢y || ¢/
foralli > 1. Hencep| = ci ¢y, with |ci| = 1. But that implies, fop = ), ai¢i,
thatUp @ ¢ = > aiVip @ ¢ = (3 @iCi Vip) ® ¢;. This would contradict the
surjectivity ofU.

This leaves us with case (B). Suppose we hglyl¢, and thusvop L Vs,
this give ¢, L ¢; (from ¢; L ¢7) and soVig || Vag henceVop L Vig (from
Vop L Vo), in contradiction to (B). Therefore we must hage L ¢, and by ex-
tension of this argumeng, L ¢. Furthermore, since holds in Case 1, similar
arguments (considering superpositiaghst ¢;, ¢i + ¢x, ¢; + ¢x) show that we
must always have, L qb} andVig || Vje fori # j. We thus obtairV; ¢ = ¢ Voe.

It is not hard to see (considering((«¢ + BY¥) ® ¢i) that the constants; are
independent op. We getU (¢ @ ¢i) = Vop @ Ci¢/. Unitarity of U enforces that

V is unitary and thep from an orthonormal basis. Therefore we can define a
unitary mapW as the unique linear extension\f¢; := ci¢/. This finally leads
toU(p ® ¢) = Vop ® We.

Case 2: U(p ® ¢o) = ¢y ® Wop. Supposad (¢ ® ¢1) = Vip ® ¢;. This gives
eithergy L Vig andWog || ] or ¢} || Vip andWge L ¢;. Both possibilities are
excluded a¥\p andV; (being isometric maps) do not map onto a ray. We conclude
thatin Case 2U (¢ ® ¢i) = ¢ ® W must hold for alli.

ConsidetU (¢ ® ¢1) = ¢; @ Wip. We must have eithep; L ¢ andWoe ||
Wi, or ¢} || 5 andWop L Wig. In the latter case, suppogé L ¢, which goes
along with Wop || Wop. This gives ¢ L ¢7 and so Wip || Wap, and
thereforépe || Whg, in contradiction to the present case. Thereforg, if ¢; then
¢ llgg for all i>1. As in Case 1, this violates the surjectivity
of U.

Hence we must have the former cagg, L ¢ and Wogp || Wip. Again in
analogy to Case 1, we can conclude fjat. ¢} andWig || Wogp foralli, j. We may
write Wi ¢ = ¢ Woe, where theg; are of modulus 1 and independentofThus we
getU(p ® D aidi) = Y «iCipl @ Wop. PuttingWio 1= Wp, i = (¢i|¢), and
Vo1¢ 1=, Ci{¢il¢)e], we get the final resulll (¢ ® ¢) = Vo1¢ ® Wizp. Again,
unitarity ofU ensures thal\f is unitary and they/ form an orthonormal basis, so
thatV;, is also unitary. O

A unitary map with the property that product states are sent to product states
can be used to model dynamics that do not lead to entanglement between the
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systems involved. Thus it can be said that all nonentangling dynamics are of the
form described in the theorem above.

Example. LetH; = H, = H.LetE: ) — L(H) be a positive operator valued
measure (POVM) ir{, defined on ar-algebra of subsets of some $ef with
values in the space of bounded operator§omefineU (¢ ® ¢) = ¢ ® ¢. Then
we have

(Up®9¢ll @ E(X)Ug ® ¢) = (9|E(X)p). (7

This is the probability reproducibility condition which makes the present model,
with couplingU, pointerE, and initial probe statéé a measurement scheme for
the observabl& of the first system (Buscht al., 1996, 1997).

This model demonstrates positively that information can be copied from the
object onto a probe in such a way that these two systems are left nonentangled.
Our theorems also show that there are two distinct types of nonentangling unitary
maps: product operators or swap maps. Consider a continuous unitaryldgroup
which models the interaction between object and probe from timé to time
t = 7. SupposaJ; is of the formV, ® W, forallt,0 <t < 7. If U, were to have
the formV,; ® Wi, then continuity would dictate that, as»> t, thenVip — ¢
for all ¢, andW,¢ — ¢ for all ¢. But this is clearly impossible.

It follows that if a unitary continuous measurement dynanig$eads to a
state transformatiold, given by the swap mapping, then for0t < ¢, some of
theU; must be such that they produce entanglement; they cannot all be of product
form.

3. CONCLUSION

We conclude that abstract Hilbert space quantum mechanics admits nonen-
tangling measurements for all positive operator measures, although intermediately
some entanglement must build up. Whether such measurement dynamics can be
implemented by realistic interactions is another question.
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